Lack of pendrin expression leads to deafness and expansion of the endolymphatic compartment in inner ears of Foxi1 null mutant mice.
نویسندگان
چکیده
Mice that lack the winged helix/forkhead gene Foxi1 (also known as Fkh10) are deaf and display shaker/waltzer behavior, an indication of disturbed balance. While Foxi1 is expressed in the entire otic vesicle at E9.5, it becomes gradually restricted to the endolymphatic duct/sac epithelium and at E16.5 Foxi1 expression in the inner ear is confined to this epithelium. Histological sections, paintfill experiments and whole-mount hybridizations reveal no abnormality in inner ear development of Foxi1(-/-) mice before E13.5. Between E13.5 and E16.5 the membranous labyrinth of inner ears from null mutants starts to expand as can be seen in histological sections, paint-fill experiments and three-dimensional reconstruction. Postnatally, inner ears of Foxi1(-/-) mice are extremely expanded, and large irregular cavities, compressing the cerebellum and the otherwise normal middle ear, have replaced the delicate compartments of the wild-type inner ear. This phenotype resembles that of the human sensorineural deafness syndrome Pendred syndrome, caused by mutations in the PDS gene. In situ hybridization of Foxi1(-/-) endolymphatic duct/sac epithelium shows a complete lack of the transcript encoding the chloride/iodide transporter pendrin. Based on this, we would like to suggest that Foxi1 is an upstream regulator of pendrin and that the phenotype seen in Foxi1 null mice is, at least in part, due to defective pendrin-mediated chloride ion resorption in the endolymphatic duct/sac epithelium. We show that this regulation could be mediated by absence of a specific endolymphatic cell type--FORE (forkhead related) cells--expressing Foxi1, Pds, Coch and Jag1. Thus, mutations in FOXI1 could prove to cause a Pendred syndrome-like human deafness.
منابع مشابه
Failure of Fluid Absorption in the Endolymphatic Sac Initiates Cochlear Enlargement that Leads to Deafness in Mice Lacking Pendrin Expression
Mutations of SLC26A4 are among the most prevalent causes of hereditary deafness. Deafness in the corresponding mouse model, Slc26a4(-/-), results from an abnormally enlarged cochlear lumen. The goal of this study was to determine whether the cochlear enlargement originates with defective cochlear fluid transport or with a malfunction of fluid transport in the connected compartments, which are t...
متن کاملMice deficient in H+-ATPase a4 subunit have severe hearing impairment associated with enlarged endolymphatic compartments within the inner ear
Mutations in the ATP6V0A4 gene lead to autosomal recessive distal renal tubular acidosis in patients, who often show sensorineural hearing impairment. A first Atp6v0a4 knockout mouse model that recapitulates the loss of H(+)-ATPase function seen in humans has been generated and recently reported (Norgett et al., 2012). Here, we present the first detailed analysis of the structure and function o...
متن کاملRESTORING HEARING AND BALANCE IN A MOUSE MODEL OF SLC26A4 - RELATED DEAFNESS By
Mutations of SLC26A4 are the most common cause of the hearing loss associated with enlargement of the vestibular aqueduct. SLC26A4 encodes pendrin, an anion exchanger expressed in the cochlea, the vestibular labyrinth, and the endolymphatic sac of the inner ear. Slc26a4 mice, devoid of pendrin expression, develop an enlarged membranous labyrinth which leads to the failure to develop hearing, th...
متن کاملExpression pattern of the mouse ortholog of the Pendred's syndrome gene (Pds) suggests a key role for pendrin in the inner ear.
Pendred's syndrome is an autosomal-recessive disorder characterized by deafness and goiter. After our recent identification of the human gene mutated in Pendred's syndrome (PDS), we sought to investigate in greater detail the expression of the gene and the function of its encoded protein (pendrin). Toward that end, we isolated the corresponding mouse ortholog (Pds) and performed RNA in situ hyb...
متن کاملLaminar Organization of Cerebral Cortex in Transforming Growth Factor Beta Mutant Mice
Transforming growth factor betas (TGF?s) are one of the most widespread and versatile cytokines. The three mammalian TGF? isoforms, ?1, ?2, and ?3, and their receptors regulate proliferation of neuronal precursors as well as survival and differentiation in neurons of developing and adult nervous system. Functions of TGF?s has a wide spectrum ranging from regulating cell proliferation and differ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Development
دوره 130 9 شماره
صفحات -
تاریخ انتشار 2003